主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院
Articles

A Study on the Interactive Evaluation in Multiple Attribute Group Decision Making

Expand
  • School of Economics and Management, Tongji University, Shanghai 200092, China

Received date: 2016-01-10

  Revised date: 2016-04-30

  Online published: 2017-01-23

Abstract

In this paper, a group is composed of dependent members who are supposed to be evaluated via multiple attributes and participation in determining these attributes' weights. In order to seek the attributes' weights in multiple attribute group decision making, an iterative algorithm is proposed, which starts with equal weights and solves a programming model with weight parameters for each group member to obtain a set of optimal weights. The optimal weights to each attribute decided by every group member are then averaged and used as the new weight parameters in modeling solving during the next iteration. This iterative procedure repeats until for each member, the consecutive weighted average values of all attributes converge within a specified small enough positive value. The optimal attributes' weights of the group are therefore obtained as the current parameter weights when the iteration terminates. Such a set of attributes' weights are jointly determined by all group members, in which sense the related results and decisions are supposed to be accepted and satisfied by all (or at least most) members. A numerical example and an application of R&D project selection are studied to demonstrate the feasibility and effectiveness of the proposed method.

Cite this article

DU Juan, HUO Jia-zhen . A Study on the Interactive Evaluation in Multiple Attribute Group Decision Making[J]. Chinese Journal of Management Science, 2016 , 24(11) : 120 -128 . DOI: 10.16381/j.cnki.issn1003-207x.2016.11.014

References

[1] Bryson N. Group decision-making and the analytic hierarchy process: Exploring the consensus-relevant information content [J]. Computers & Operations Research, 1996, 23(1): 27-35.

[2] Herrera-Viedma E, Herrera F, Chiclana F. A consensus model for multiperson decision making with different preference structures [J]. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 2002, 32(3): 394-402.

[3] 徐泽水. 纯语言多属性群决策方法研究 [J]. 控制与决策,2004,19(7):778-781.

[4] 王学军,郭亚军. 基于G-1法的群决策集结分析 [J]. 中国管理科学,2004,12(S1):14-16.

[5] 徐迎军,李东. 多属性群决策达成一致方法研究 [J]. 控制与决策,2010,25(12):1810-1820.

[6] 尤天慧,李洪燕,刘彩娜. 一种具有不确定偏好序信息的多指标群决策方法 [J]. 中国管理科学,2013,21(5):110-114.

[7] Ramanathan R, Ganesh L S. Group preference aggregation methods employed in AHP: An evaluation and an intrinsic process for deriving members' weightages [J]. European Journal of Operational Research, 1994, 79(2): 249-265.

[8] 孟波,付微. 一种有限方案多目标群决策方法 [J]. 系统工程,1998,16(4):57-61.

[9] 宋光兴,邹平. 多属性群决策中决策者权重的确定方法 [J]. 系统工程,2001,19(4):84-89.

[10] 梁樑,王国华. 一种群决策中专家客观权重的确定方法 [J]. 系统工程与电子技术,2005,4:652-655.

[11] Yue Zhongliang. A method for group decision-making based on determining weights of decision makers using TOPSIS[J]. Applied Mathematical Modelling, 2011, 35(4): 1926-1936.

[12] Yue Zhongliang. Extension of TOPSIS to determine weight of decision maker for group decision making problems with uncertain information [J]. Expert Systems with Applications, 2012, 39(7): 6343-6350.

[13] 梁昌勇,戚筱雯,丁勇,等. 一种基于TOPSIS的混合型多属性群决策方法 [J]. 中国管理科学,2012,20(4):109-117.

[14] 蒋文能. 群组决策中专家权重确定的思路和方法 [J]. 统计与决策,2013,2:24-28.

[15] Chen C, Chau K W. Three-person multi-objective integrated approach to determine attribute weights [J]. European Journal of Operational Research, 2002, 142(3): 625-631.

[16] Chen Zhiping, Yang Wei. A new multiple attribute group decision making method in intuitionistic fuzzy setting[J]. Applied Mathematical Modelling, 2011, 35: 4424-4437.

[17] Xu Z S, Yager R R. Intuitionistic and interval-valued intuitionistic fuzzy preference relations and their measures of similarity for the evaluation of agreement within a group [J]. Fuzzy Optimization and Decision Making, 2009, 8(2): 123-139.

[18] 闫书丽,刘思峰,方志耕,等. 区间灰数群决策中决策者和属性权重确定方法 [J]. 系统工程理论与实践,2014,34(9):2372-2378.

[19] 梁樑,王国华. 多层次交互式确定权重的方法 [J]. 系统工程学报,2002,17(4):358-363.

[20] Li Dengfeng, Chen Guohong, Huang Zhigang. Linear programming method for multiattribute group decision making using IF sets [J]. Information Sciences, 2010, 180(9): 1591-1609.

[21] 戚筱雯,梁昌勇,张恩桥,等. 基于熵最大化的区间直觉模糊多属性群决策方法 [J]. 系统工程理论与实践,2011,31(10):1940-1948.

[22] 郭凯红,李文立. 权重信息未知情况下的所属性群决策方法及其拓展 [J]. 中国管理科学,2011,19(5):94-103.

[23] Zhang Zhen, Guo Chonghui. A method for multi-granularity uncertain linguistic group decision making with incomplete weight information [J]. Knowledge-Based Systems, 2012, 26(2): 111-119.

[24] Ma Jian, Fan Zhipeng, Huang Lihua. A subjective and objective integrated approach to determine attribute weights [J]. European Journal of Operational Research, 1999, 112(2): 397-404.

[25] Rao R V, Patel B K. A subjective and objective integrated multiple attribute decision making method for material selection [J]. Materials & Design, 2010, 31(10): 4738-4747.

[26] Oral M, Kettani O, Liang P. A methodology for collective evaluation and selection of industrial R&D projects [J]. Management Science, 1991, 37(7): 871-883.

[27] Green R, Doyle J, Cook W D. Preference voting and project ranking using DEA and cross-evaluation [J]. European Journal of Operational Research, 1996, 90(3): 461-472.

[28] Liang Liang, Wu Jie, Cook W D, et al. The DEA game cross efficiency model and its Nash equilibrium [J]. Operations Research, 2008, 56(5): 1278-1288.
Outlines

/