In recent years, the strong fluctuations in crude oil prices bring many uncertain factors to the stable development of real economy, so there is an important theoretical and practical significance in accurately characterizing and predicting the extreme volatility riskamong various crude oil markets. In this paper, combining extreme value theory(EVT) with fivecategories of R-vine copula models, the extreme dependence relationship between six crude oil markets is depicted. Based on that the value at risk(VaR) and expected shortfall(ES) models are constructed to measure the out-of-sample extreme risk using a sliding time window method. Finally, a backtesting for unconditional coverage and backtesting based on bootstrap are, and carried out the VaR and ES measurement accuracy of different models is compared. The empirical results are summarized as follows:(1) Mixed R-vine-EVT model can describe the extreme dependence relationshipamong various crude oil marketsmore excellent and show a better risk measures efficiency.(2) VaR model can well depict the riskstatusat low risk levels, while the measure precision at high risk levels is insufficient. On the contrary, ES model shows a better risk measurement capability at the high risk levels.Accordingly, some practical suggestions are put forward e.g., investors should introduceextreme value theory to describe the extreme risk situation of crude oil markets; under the background of sharp fluctuations in international crude oil prices, Mixed R-vine model can more adapt to the changes of dependency relationship among various crude oil markets.
[1] 金洪飞,金荦.国际石油价格对中国股票市场的影响——基于行业数据的经验分析[J].金融研究,2010,(2):173-187.
[2] Zhang Yuejun,Zhang Lu. Interpreting the crude oil price movements:Evidence from the Markov regime switching model[J]. Applied Energy,2015,143:96-109.
[3] Moya-Martínez P,Ferrer-Lapeña R,Escribano-Sotos F. Oil price risk in the Spanish stock market:An industry perspective[J]. Economic Modelling,2014,37:280-290.
[4] 王雪标,周维利,范庆珍.我国原油价格与外国原油价格的波动溢出效应——基于DCC-MGARCH模型分析[J].数理统计与管理,2012,31(4):571-584.
[5] Regnier E. Oil and energy price volatility[J]. Energy Economics,2007,29(3):405-427.
[6] 潘伟,王凤侠,吴婷.不同突发事件下进口原油采购策略[J].中国管理科学,2016,24(7):27-35.
[7] 马锋,魏宇,黄登仕.基于vine copula方法的股市组合动态VaR测度及预测模型研究[J].系统工程理论实践,2015,35(1):26-36.
[8] 于文华,魏宇,康明惠.不同时变Copula-EVT-ES模型精度比较研究[J].管理科学学报,2015,18(5):32-45.
[9] Artzner P,Delbaen F,Eber J M,et al. Coherent Measures of Risk[J]. Mathematical Finance,1999,9(3),203-228.
[10] 王鹏.基于时变高阶矩波动模型的VaR与ES度量[J].管理科学学报,2013,16(2):33-45.
[11] 刘明磊,姬强,范英.金融危机前后国内外石油市场风险传导机制研究[J].数理统计与管理,2014,33(1):9-20.
[12] Fan Ying,Zhang Yuejun,Tsai H T,et al. Estimating ‘Value at Risk’ of crude oil price and its spillover effect using the GED-GARCH approach[J]. Energy Economics,2008,30(6):3156-3171.
[13] 王鹏,魏宇.经典金融理论的困境与金融物理学研究的兴起[J].管理科学学报,2014,17(9):40-55.
[14] 张帮正,魏宇,余江,等.基于EVT-Vine-copula的多市场相关性及投资组合选择研究[J].管理科学,2014,27(3):133-144.
[15] 鲁志军,姚德权.基于Copula-VaR的金融资产组合风险测度研究[J].财经理论与实践,2012,33(180):48-52.
[16] 于文华,魏宇,淳伟德.欧债危机环境中资产组合ES模型比较研究[J].中国管理科学,2014,22(5):8-15.
[17] 高江.藤Copula模型与多资产投资组合VaR预测[J].数理统计与管理,2013,32(2):247-258.
[18] Joe H. Families of m-variate distributions with given margins and m(m-1)/2 bivariate dependence parameters[J]. Lecture Notes-Monograph Series,1996,28:120-141.
[19] Bedford T,Cooke R M. Probability density decomposition for conditionally dependent random variables modeled by vines[J]. Annals of Mathematics and Artificial intelligence,2001,32(1-4):245-268.
[20] Bedford T,Cooke R M. Vines-A new graphical model for dependent random variables[J]. Annals of Statistics,2002,30(4):1031-1068.
[21] Aas K,Czado C,Frigessi A,et al. Pair-copula constructions of multiple dependence[J]. Insurance:Mathematics and economics,2009,44(2):182-198.
[22] Koliai L. Extreme risk modelling:An EVT-pair-copulas approach for financial stress tests[J]. Journal of Banking & Finance,2016,70:1-22.
[23] Jondeau E,Rockinger M. Conditional dependency of financial series:The Copula-GARCH model[J]. Journal of International Money and Finance,2006,25(5):827-853.
[24] 魏宇.股票市场的极值风险测度及后验分析研究[J].管理科学学报,2008,11(1):78-88.
[25] Ayusuk A,Sriboonchitta S. Risk analysis in asian emerging markets using Canonical vine copula and extreme value theory[J]. Thai Journal of Mathematics,2014,(SI):59-72.
[26] 林宇,陈王,王一鸣,等.典型事实、混合Copula函数与金融市场相依结构研究[J].中国管理科学,2015,23(4):20-29.
[27] Pickands Ⅲ J. Statistical inference using extreme order statistics[J]. The Annals of Statistics,1975,3(1):119-131.
[28] Balkema A A,De Haan L. Residual life time at great age[J]. Annals of Probability,1974,2(5):792-804.
[29] Dißmann J. Statistical inference for regular vines and application[D]. München:Technische Universitat München,2010.
[30] Brechmann E C. Truncated and simplified regular vines and their applications[D]. Müuchen:Technische Universitat Miinchen,2010.
[31] Vuong Q H. Likelihood ratio tests for model selection and non-nested hypotheses[J]. Econometrica,1989,57(2):307-333.
[32] Kupiec P. Techniques for verifying the accuracy of risk measurement models[J]. Journal of Derivatives,1995,2:173-184.
[33] McNeil A,Frey R. Estimation of tail-related risk measures for heteroscedastic financial time series:An extreme value approach[J]. Journal of Empirical Finance,2000,7(3):271-300.
[34] DuMouchel W H. Estimating the stable index α in order to measure tail thickness:A critique[J]. The Annals of Statistics,1983,11(4):1019-1031.
[35] Lu Fengbin,Hong Yongmiao,Wang Shouyang,et al. Time-varying Granger causality tests for applications in global crude oil markets[J]. Energy Economics,2014,42(1):289-298.