Dynamic comprehensive evaluation of hybrid information is a major research issue in comprehensive evaluation. How to effectively transform and dynamically aggregate hybrid information on the premise of avoiding information distortion has always been a hot debated and difficult point in this research area. Previous research generally presents problems such as monotonous time series data, improper transformation of hybrid information, and insufficient dynamic aggregation. To solve these problems, in this paper concentration is put on dynamic comprehensive issues with index values comprised of real number, interval number, and natural language, and an "explicit-implicit" dynamic double incentive evaluation mechanism is put forward. Firstly, to solve the problem of hybrid information transformation, two-tuple linguistic information is employed to transform natural language to ordered real number, then whole sequence method is adopted to process interval number and real number through standardization, finally a relative superiority model is proposed to statically aggregate standardized hybrid information. Secondly, LN-double incentive control line is introduced, and an "explicit-implicit" geometric double incentive model is built to dynamically aggregate time series data (static aggregated value at each time point). Dynamic comprehensive evaluation values of each plan are obtained then sorted. Thirdly, partial data from previous research is cited to analyze a vendor selection case. The case analysis results show that the proposed method is effective and superior to previous ones. The method proposed in this paper provides a new research thought and technical option for further research of similar type, including taking into consideration expert weights, collective interaction, unknown index weights or other uncertain situations.
ZHANG Fa-ming, XIAO Wen-xing
. Design of Dynamic Double Incentive Evaluation Mechanism and its Application Under Mixed Information[J]. Chinese Journal of Management Science, 2017
, 25(12)
: 138
-146
.
DOI: 10.16381/j.cnki.issn1003-207x.2017.12.015
[1] 郭亚军.综合评价理论、方法及拓展[M].北京:科学出版社,2012.
[2] 韩菁, 叶顺心, 柴建, 等. 基于后悔理论的混合型多属性案例决策方法[J]. 中国管理科学, 2016,24(12):108-116.
[3] 梁昌勇,吴坚,陆文星.一种新的混合型多属性决策方法及其在供应商选择中的应用[J].中国管理科学,2006,14(6):71-76.
[4] 吴坚. 基于OWA算子理论的混合型多属性群决策研究[D].合肥:合肥工业大学,2008.
[5] Fan Zhiping,Ma Jian,Jiang Yanping,et al.A goal programming approach to group decision making based on multiplicative preference relation and funny preference relations[J]. European Journal of operational research,2006,174(1):311-321.
[6] Herrera F, Martinez L,Sanchez PJ, Managing non-homogeneous information in group decision making[J].European Journal of Operational Research.2005,166(1):115-132.
[7] 许成磊, 段万春, 孙永河. 多属性群决策的混合结构偏好识别与融合方法[J]. 中国管理科学, 2016,24(8):018.
[8] 杜娟, 霍佳震. 交互式多属性群决策评价方法研究[J]. 中国管理科学, 2016, 24(11):120-128.
[9] 李伟伟,易平涛,郭亚军.混合评价信息的随机转化方法和应用[J].控制与决策,2014,29(4):753-758.
[10] 徐林明, 林志炳, 李美娟, 等. 基于模糊Borda法的动态组合评价方法及其应用研究[J]. 中国管理科学, 2017,25(2):165-173.
[11] 郭亚军.一种新的动态综合评价方法[J].管理科学学报,2002,5(2):50-54.
[12] 易平涛,郭亚军,张丹宁.基于双激励控制线的多阶段信息集结方法[J].预测,2007,26(3):39-43.
[13] 易平涛,张丹宁,郭亚军.基于泛激励控制线的多阶段信息集结方法[J].运筹与管理,2010,19(1):49-55.
[14] 易平涛,马雪丽,郭亚军,等.基于分层激励控制线的多阶段信息集结方法[J].运筹与管理,2013,22(6):140-146.
[15] 张发明.基于双激励模型的动态综合评价方法及其应用[J].系统工程学报,2013,28(2):248-255.
[16] 易平涛,周莹,郭亚军.带有激励作用的多指标动态综合评价方法及其应用.东北大学学报,2014, 35(4):597-600.
[17] Xu Zeshui.A method based on the dynamic weighted geometric aggregation operator for dynamic hybrid multi-attribute group decision making[J]. International Journal of uncertainty, Fuzziness and knowledge-Based Systems,2009,17(1):15-33.
[18] 易平涛,张丹宁,郭亚军,等.动态综合评价中的无量纲化方法[J].东北大学学报,2009,30(6):899-902.
[19] 张发明.区间标度群组序关系评价方法及其应用[J].系统工程学理论与实践,2013, 33(3):720-725.
[20] 张震,郭崇慧.一种基于二元语义信息处理的多属性群决策方法[J].控制与决策,2011,26(12):81-85.
[21] 燕蜻.混合型多属性群决策方法研究[D].太远:山西大学,2012.
[22] 王晓,陈学友,刘兮.基于离差的区间二元语义多属性群决策方法[J].管理学报,2011,8(2):301-305.
[23] 刘晓,李海越,王成恩,等.供应商选择模型与方法综述[J].中国管理科学,2004,12(1):139-148.
[24] Wu Jian, Chiclana F, Fujita H, et al. A visual interaction consensus model for social network group decision making with trust propagation[J]. Knowledge-Based Systems, 2017, 122:39-50.
[25] Liu Yujia, Liang Changyong, Chiclana F, et al. A trust induced recommendation mechanism for reaching consensus in group decision making[J]. Knowledge-Based Systems, 2017, 119:221-231.
[26] Wu Jian, Chiclana F. Visual information feedback mechanism and attitudinal prioritisation method for group decision making with triangular fuzzy complementary preference relations[J]. Information Sciences, 2014, 279:716-734.