Derivative pricing and risk management are affected by the selection of stochastic process using to describe the asset price. In some literature, the stochastic processes of underlying asset are different, even inconsistent. In this article, a statistic inference approach is put forward to choose the best stochastic process to describe underlying asset from different processes. The approach uses the back testing. Firstly, it divides the data into estimation window and test window, then estimates the parameters of the stochastic process, finally, deduces the out of sample distribution of every asset price in test window under the assumption of fixed parameters. The win ratio about the real data falling on the accepting region is used to judge whether the null hypothesis is true or not. Commodity, exchange rate, interest rate and stock are used as underlying asset. The empirical results reveal that in some circumstance, commonly-used model describing the asset price is not optimal.
PAN Hui-feng, YUAN Jun, GAO Peng
. A Statistical InferenceApproach for the Selection of Stochastic Process Based on Back Testing of Out-of-sample Distribution[J]. Chinese Journal of Management Science, 2018
, 26(4)
: 155
-162
.
DOI: 10.16381/j.cnki.issn1003-207x.2018.04.017
[1] Cont R. Model uncertainty and its impact on the pricing of derivative instruments[J]. Mathematical Finance,2006,16(3),:519-547.
[2] Garman M B,Kohlhagen S W. Foreign currency option values[J]. Journal of International Money and Finance,1983,3(2):231-237.
[3] Carr P,Wu Liuren. Stochastic skew in currency options[J]. Journal of Financial Economics,2007,86(1):213-247.
[4] Sweeny R. Mean reversion in G-10 nominal exchange rates[R]. Working Paper,Georgetown University,2000.
[5] Hui C H,Lo C F,Yeung Vet al. Valuing foreign currency options with a mean-reverting process:A study of Hong Kong Dollar[J]. International Journal of Finance & Economics,2008,13(1):113-134.
[6] Castalia Strategic Advisors. Exchange rate contingencies for the HVDC and NAAN projects[R].2008.
[7] Schwartz E S. The stochastic behavior of commodity prices:Implications for valuation and hedging[J]. Journal of Finance, 1997, 52(3):923-973.
[8] Postali F A S, Picchetti P. Geometric brownian motion and structural breaks in oil prices:A quantitative analysis[J]. Energy Economics, 2006, 28(4):506-522.
[9] Hull J, White A. Pricing interest-rate-derivative securities[J]. Review of Financial Studies, 1990, 3(4):573-592.
[10] 谢赤,吴雄伟. 基于Vasicek和CIR模型中的中国货币市场利率行为实证分析[J].中国管理科学,2002,10(3):22-25.
[11] 沈根祥,胡志军.中国股票市场资产价格模型设定检验[J].中国管理科学,2014,22(2):16-23.
[12] 潘慧峰,边江泽,张艾颖.度量复杂衍生品定价中的模型风险-以中信泰富的杠杆式外汇合约为例[J].中国软科学,2013,(8):114-153.
[13] Chan K C, Karolyi G A,Longstaff F A, et al. An empirical comparison of alternative models of the short-term interest rate[J].Journal of Finance,1992,47(3):1209-1227.
[14] 潘婉彬,陶利斌,缪柏其.中国银行间拆借利率扩散模型的极大拟似然估计[J].数理统计与管理,2007,26(1):158-163.
[15] Kaffel B, Fathi A. A methodology for the choice of the best fitting continuous-time stochastic models of crude oil price[J]. Quarterly Review of Economics and Finance,2009,49(3):971-1000.
[16] 姚慧,范龙振.石油价格跳跃下期货价格动态模型及实证分析[J].系统工程学报,2011,26(2):181-187.
[17] 潘慧峰,张艾颖,刘芳君. 衍生品定价中的模型风险研究的回顾与展望[J]. 科学决策, 2012,(3):74-94.
[18] Gillespie D T. Markov processes:An introduction for physical scientists[M].Cambridge Academic Press,1992.
[19] Thijs V D B. Calibrating the Ornstein-Uhlenbeckmodel[EO/OL]. http://www.sitmo.com/article/Calibrating-the-Ornstein-Uhlenbeck-model, 2011.
[20] Adam Z, David A W B, Maurizio P, et al. Data-driven stochastic modeling of zebrafish locomotion[J].Journal of Mathematical Biology,2015,71(5):1081-1105.
[21] Vasicek O. An equilibrium characterization of the term structure[J].Journal of Financial Economics,1977,5(5):177-188.
[22] Black F, Scholes M.The pricing of options and corporate liabilities[J].Journal of Political Economy,1973, 81(3):637-54.