主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院
Articles

Interval Quadratic Programming Model for Portfolio Selection with Improved Interval Acceptability Degree

Expand
  • 1. Donlinks School of Economics and Management, University of Science and Technology Beijing, Beijing 100083, China;
    2. Tsinghua University School of Economics and Management, Beijing 100084, China

Received date: 2016-10-09

  Revised date: 2017-04-14

  Online published: 2018-11-23

Abstract

Based on the Markowitz mean variance model, the portfolio selection problem is disussed under uncertain environment in this paper. Estimation errors or uncertainties in expected return and risk measurement create difficulties for portfolio optimization. A new approach is proposed to treating uncertainty. By using interval numbers to describe the securities return rate, risk loss rate and securities liquidity, the interval analysis is used to extend the classical mean-variance portfolio optimization problem to the cases with bounded uncertainty, and an improved interval quadratic programming model is introduced for portfolio selection by introducing the linear transaction costs and liquidity of securities market. To solve the improved interval quadratic programming model, an effective method based on the improved interval acceptability degree is proposed to transform the uncertain programming into a deterministic programming, which can get effective portfolio's risk range of the model based on the optimization level α and acceptable level η. Thus, based on the portfolio's risk range, investors can choose a reasonable investment plan in an uncertain market environment. In addition, the proposed method is illustrated by three kinds of securities data experiments. The results show that the new approach is better than the method commonly used on portfolio selection. The proposed model provides a new way of investment for investors, and the solution for the model also provides a new idea for the researchers. But in the future, there is still a wide research space for the solution of the interval quadratic programming model for portfolio selection.

Cite this article

WANG Jian-jian, HE Feng, WU Zi-xuan, Chen Li-li . Interval Quadratic Programming Model for Portfolio Selection with Improved Interval Acceptability Degree[J]. Chinese Journal of Management Science, 2018 , 26(9) : 11 -18 . DOI: 10.16381/j.cnki.issn1003-207x.2018.09.002

References

[1] Markowitz H. Portfolio selection[J]. The Journal of Finance, 1952, 7(1):77-91.

[2] 张鹏, 张卫国, 张逸菲. 具有最小交易量限制的多阶段均值-半方差投资组合优化[J]. 中国管理科学, 2016, 24(7):11-17.

[3] 周忠宝, 刘佩, 喻怀宁, 等. 考虑交易成本的多阶段投资组合评价方法研究[J]. 中国管理科学, 2015, 23(5):1-6.

[4] 路应金, 唐小我, 周宗放. 证券组合投资的区间数线性规划方法[J]. 系统工程学报, 2004, 19(1):33-37.

[5] Tong Shaocheng. Interval number and fuzzy number linear programmings[J]. Fuzzy Sets and Systems, 1994, 66(3):301-306.

[6] Lai K K, Wang Shouyang, Xu Jiuping, et al. A class of linear interval programming problems and its application to portfolio selection[J].IEEE Transactions on Fuzzy Systems, 2002, 10(6):698-704.

[7] Wu Meng, Kong Dawang, Xu Jiuping, et al. On interval portfolio selection problem[J]. Fuzzy Optimization and Decision Making, 2013, 12(3):289-304.

[8] 陈华友, 赵玉梅. 基于区间数的证券组合投资模型研究[J]. 大学数学, 2007, 23(1):21-25.

[9] 赵玉梅, 鲍宏伟, 孙西超. 含交易费用的证券组合投资模型的满意解[J].大学数学,2010,26(4):143-147.

[10] Liu S T, Wang R T. A numerical solution method to interval quadratic programming[J]. Applied Mathematics and Computation, 2007, 189(2):1274-1281.

[11] Li Wei, Xia Mengxue, Li Haohao. New method for computing the upper bound of optimal value in interval quadratic program[J]. Journal of Computational and Applied Mathematics, 2015, 288:70-80.

[12] 徐晓宁, 何枫, 陈荣, 等. 允许卖空条件下证券投资组合的区间二次规划问题[J]. 系统工程理论与实践, 2013, 33(10):2533-2538.

[13] 徐晓宁, 何枫. 不允许卖空下证券投资组合的区间二次规划问题[J]. 中国管理科学, 2012, 20(3):57-62.

[14] Liu Yongjun, Zhang Weiguo, Zhang Pu. A multi-period portfolio selection optimization model by using interval analysis[J]. Economic Modelling, 2013, 33:113-119.

[15] Chanas S, Kuchta D. Multiobjective programming in optimization of interval objective functions a generalized approach[J].European Journal of Operational Research, 1996,94(3):594-598.

[16] 陈国华, 廖小莲. 基于区间规划的投资组合模型[J]. 辽宁工程技术大学学报:自然科学版, 2010, 29(5):835-838.

[17] Sengupta A, Pal T K, Chakraborty D. Interpretation of inequality constraints involving interval coefficients and a solution to interval linear programming[J]. Fuzzy Sets and Systems, 2001, 119(1):129-138.

[18] Ishibuchi H, Tanaka H. Multiobjective programming in optimization of the interval objective function[J]. European Journal of Operational Research, 1990, 48(2):219-225.

[19] 郭均鹏, 李汶华. 区间线性规划的标准型及其最优值区间[J]. 管理科学学报, 2004, 7(3):59-63.

[20] 邓雪, 赵俊峰, 李荣钧. 基于区间不等式满意指数的投资组合选择模型[J]. 统计与决策, 2010, (22):145-147.

[21] 达庆利, 刘新旺. 区间数线性规划及其满意解[J]. 系统工程理论与实践, 1999,19(4):3-7.
Outlines

/